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\ ABSTRACT

A statistical model is analyzed for the growth of bubbles in a
Rayleigh-Taylor unstable interface. The model is compared to solu-
tions of the full Euler equations for compressible two phase flow,
using numerical solutions based on the method of front tracking. The
front tracking method has the distinguishing feature of being a
predominantly Eulerian method in which sharp interfaces are
preserved with zero numerical diffusion. Various regimes in the sta-
tistical model exhibiting qualitatively distinct behavior are explored. It

-, o appears that the parameters in the statistical model can be set from first
Ry ) . . . . . . .

-.;:;. principles on the basis of comparison with numerical solutions of the
hot full Euler equation. C -
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I. INTRODUCTION

A. Results, Methods and Goals

The purpose of this paper is to formulate a program for the statistical analysis of
the long time growth of bubbles formed by Rayleigh-Taylor unstable interfaces. In
addition, this paper will carry out some initial stages of the program. There are two
essential ingredients to this program. The first is an unpublished statistical model!
for bubble growth and cannibalization, developed by one of the authors (D. H. S.)
and J. A. Wheeler in 1961. An important prediction of this model which we further
investigate and quantify is that bubble merger leads to an accelerated growth rate of
the interface. The second ingredient is a front tracking hydrodynamics code, suitable

for the study of unstable interfaces, developed by the authors and coworkers.2~’

There are two main new results in this paper. We have carried out a careful
study up to late times of the dynamics of a single mode (bubble and spike) for a
Rayleigh-Taylor interface in the compressible regime. Moreover we have identified
new regimes and correlations in the interactions of ensembles of large numbers of
bubbles through a study of the statistical model for bubble dynamics. These results
are placed in a context, which if developed further, could ailow a first principles

understanding of the Rayleigh-Taylor mixing layer.

The statistical model contains two free parameters, which are the velocity of a
single bubble and the relative location for merger of two adjacent bubbles. These
parameters can be viewed as describing the essential features of the one and two
body bubble dynamics. By a study of one and two body bubble dynamics in the full
Euler equations of fluid dynamics, using the front tracking code, we can set these
parameters and analyze their dependence on density ratios, compressibility, equation
of state, geometry, viscosity and surface tension. In principle their dependence on
spatial dimensions can similarly be determined, by use of three dimensional compu-

tations.

Once the parameters of the statistical model have been fixed, it can be studied
on its own right. The most basic question is the possible existence of distinct parame-
ter regimes or domains of initial data producing qualitatively distinct behavior (e.g.

regular or quasi-uniform vs. runaway or single finger dominant modes). Any well

|
"“-_‘»‘-t‘,‘, ". '. 10 .. < " "o g -_,-_’.. lr'- 1. ) A . N
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defined boundaries or separatrices which might exist between such domains could be
thought of as defining a phase transition in the statistical behavior of an ensemble of
bubbles. Within a single solution domain, the time evolution of statistical averages
such as the average bubble size, height or velocity are important. Moreover the sta-
bility or insensitivity of these quantities to statistical noise in the initial conditions

will also be important.

The program presented here, for the analysis of bubble dynamics, is only part of
a larger question, which is a theory of the Rayleigh-Taylor mixing layer. The mixing
layer can be analyzed in terms of various regions, of which the bubble regime is only
one, located at the edge of the mixing layer closest to the undisturt.d heavy fluid.
There is a second regime, dominated by spikes or droplets at the edge of the undis-
turbed light fluid. A theory known as dusty gas could be appropriate for this region.
It has not been determined whether additional interior regimes are needed for a full
description of the mixing layer. Such a theory should describe blobs of. heavy
material moving at a terminal velocity and shedding vortices (Atwood ratio A < 1) or
in free fall without vortices (A = 1), while the pinch off of sheets into spikes and
spikes into droplets would seem to depend on surface tension. Regimes in the time
evolution of the mixing layer can also be identified, such as the small amplitude
(linear), the coherent individual mode, the mode competition and the chaotic
regimes.® Mixing theories have been advanced in a number of other. contexts as
well 971! See ref.12 for a previous study of the compressible Rayleigh-Taylor prob-

lem.

B. Bubble Merger and Acceleration of the Bubble Interface

The present study goes beyond previous Rayleigh-Taylor studies in a number of
respects. In doing this, we make use of the unique capabilities of the front tracking
code. The detailed study of the one body bubble problem presented here for
compressible Rayleigh-Taylor fingering seems to be the first attempt to set the
parameters of the Sharp-Wheeler model from a first principles calculation. Youngs
has argued?® that deeply nonlinear multi-mode computations of the chaotic regime are
necessary to understand the Rayleigh-Taylor chaotic mixing regime. Since such com-
putations are at best only marginally possible and of uncertain validity in their predic-

tion of statistical mixing phenomena, it is significant that some statistical information
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may be extracted from the study of the one and two bubble problems. A test of these
predictions would be to compare them to direct simulation of the deeply nonlinear
chaotic regime, using front tracking and other methods. The computational analysis
of the Sharp-Wheeler model is also new. The identification of a transient exponen-
tially growing runaway mode in the bubble merger process and the importance of
nearest neighbor correlations in limiting bubble amalgamation appears to be new.
The constant acceleration rate!:8:13 of the bubble interface has been confirmed in the
examples of initial data considered, but the rate has been found to depend on initial
conditions, and seems not be a universal constant at least for the time periods
explored in this paper. Youngs' argument® in favor of universality was based on a
scaling argument and on an absence of extra length scales in the problem. Our exam-
ple of non-universal acceleration rates depends on introducing an extra length scale.
This was introduced by slightly varying the bubble radii, so that the deviation in
radius was much smaller than the mean radius. Because of the presence of a length
scale in the initial data. we do not contradict the scaling argument of Youngs, but we
do suggest that his hypothesis of the absence of extra length scales may be valid only
for a restricted class of Cauchy data or for extremely late times. Experimental
results on carefully prepared interfaces reveal a universal behavior, with the bubble
interface height h = h(1) satisfying the relation h = agAr? and a = .06 (two dimen-

Po =P
pb+pa.

Here p, is the density of the gas above the interface, and p; is the density of the gas

sion) or @ = .07 (three dimension) 15, where A is the Atwood ratio, A =

below the interface.

Other mechanisms leading to a constant acceleration, agAr2, of the bubble inter-
face are possible. For an initial time period, the bubbles accelerate (are in free gravi-
tational rise). For the strongly compressible case considered here, the bubbles attain
velocities up to Mach 2 relative to the sound speed of the heavy gas. Comparing our
values for free rise renormalized gravity (= .5Ag) for bubbles, we get a position
h = 25Agt? by this mechanism, which is approximately four times the position
predicted by the merger mechanism, according to Read’s data. Free rise describes an

earlier time period than the merger process, and compressibility plays a major role in

setting the duration of this earlier regime.
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A second possible mechanism for constant acceleration is that random initial
data may contain a mixture of large and small wavelengths. The small wavelengths

grow more rapidly at first but then saturate and eventually the initially slower large

E:!‘. . wavelengths become faster and win out. Thus large structures may be latent in the
‘*:E: initial data, and emerge gradually over time, leading to an acceleration of the bubble
':’?3‘ . interface. Neither of these alternate mechanisms appear to be important in Read's
- data.

e

q:;{:' Portions of our results have been announced previously.3~17 (See ref.!® for a
%ﬁEI: further discussion of this problem).

(:t':: II. A FORMULATION OF THE STATISTICAL MODEL

‘Ei::e The main idea in the statistical model is to introduce a very reduced set of
A

parameters ("idealized interfaces”) and a simplified interface dynamics, which cap-

tures the essential features of the full flow in the mixing layer. For comparison pur-

e
é':?.: poses, we also need a map from arbitrary to idealized interfaces. It is then hoped
::'2:: that the stable statistical properties (average bubble size, etc.) of the model will
’ correspond to stable statistics of the full flow and that after adjustment of model
:g: parameters, the dynamics of such stable statistical properties will approximate the
S;E'. true dynamics of such stable properties of the full flow.

%.c The first approximation we make in going from the full flow to the model is to
“..:‘, assume that the interface position at time ¢ is a single valued function z = z(x,y,r) of
::‘:". the point x, y. We do not assume x, y, z to be a rectangular set of coordinates, and
::'. so various curvilinear geometries are included in this analysis. Let us suppose that
Ao the heavy fluid is located in the region z < z(x,y,t) below the interface and that the
‘:ze.: accelerating force is in the direction of the positive z axis.

E}E', Since a Rayleigh-Taylor unstable interface at late time will be far from single
5:}_ — valued and since we are developing here a theory of the bubble region only, within
Y the mixing layer, we regard z(x,y,r) as representing a "bubble envelope” equivalent
s:'?:‘ to the true interface, defined precisely by the imposition of mass conservation along
Ej' each line x = const., y = const. Thus if the entire multivalued interface lies below
s some reference height zg, we define

R

i;:; 2(x,y,t) = z0 — L(x,y,t,2,)

i

:.g‘d

i

M

. a .
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where L is the length of the portion of the line x = const., ¥ = const. located in the

light fluid above zy.

Next we fix a set of bubble boundaries, which in mathematical language is a til-
ing of the surface : = 0 by polyhedra. In two space dimensions, the bubbles thus
define a decomposition of the x axis into non-overlapping intervals. Even in this
simplest case, we do not propose a general algorithm for the placement of bubble
boundaries, but we will return to this question as part of a detailed analysis of when

or whether merger occurs in the two body bubble interaction problem.

Finally the model assumes that the fluid is piecewise constant, and constant
within each bubble. Given a bubble decomposition (polyhedral tiling) of a general
single valued interface z = z(x,y.r), the principle of mass conservation again defines

a corresponding interface within the model, i. e. piecewise constant on each bubble.

The kinematics of the model is now determined; we must specify its dynamics.
There are two processes allowed in the dynamics of the model: vertical motion and
merger. We assume that each bubble moves vertically with a velocity z which is
independent of the bubble height and the other bubbles. Thus z is a function of the
bubble shape alone. We note that for a circular bubble of vacuum, with radius r, ris-

ing in an incompressible fluid in three space dimensions, Taylor's formula gives

1
—7 = .48 (gr)?. (1)

In two dimensions, z = z(r), is thus assumed to be a function of the bubble radius

alone. As a further approximation in three dimensions, we define an effective radius

1
r= (%Ci)f and postulate that z = Z(r) in this case also. In effect, this means that

the bubbles do not depart too greatly from a circular cross section.

The remaining aspect of the model bubble dynamics is merger. It is postulated
that adjacent bubbles merge when one is sufficiently far ahead of the other. After
merger, there is a single bubble, with cross section equal to the union of the cross
sections of its two constituents and a height z determined by conservation of mass
within this cross section. If the heights and radii of the two bubbles before merger

are z; and r;, i = 1, 2, then we formulate the merger criterion as

22— 215 —m(ry) (2)

A A TN AR L G
R R A M Lt 0 X X
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where r; < ry and m(r) is an unknown function of r.

Thus the statistical model is defined by two unknown functions, z(r) and m(r),
which express the essential features of the one and two body bubble problems respec-
tively. These functions must then be set either by some external theory or experi-
ments or by a numerical study of these one and two body problems in the full Euler

equations.

One aspect of this model is that after merger the new bubble may also satisfy
the merger criterion with an adjacent bubble thus giving rise to a cascade of mergers
at a single instant of time. For example, a cascade occurs if the next nearest neigh-
bor of a large bubble is smaller than its nearest neighbor and the height of the next
nearest neighbor is less than the height of the nearest neighbcr. Thus the merger
process in this model for some distributions of bubbles consists of more than two

body interactions.

III. A QUALITATIVE STUDY OF THE STATISTICAL MODEL

We assume a probabilistic distribution of initial data in the form of bubble
heights and widths. It should be noted that the model of Section 2 is actually deter-
ministic, and becomes a statistical model at this point alone. For simplicity we now
consider bubbles in two dimensions. From a fundamental point of view, we imagine
a translation invariant ensemble of random bubble interfaces, constrained to be
defined by single valued piecewise constant functions z = z(x). This ensemble is fully
described by a set of n-point functions or correlation functions, i.e. conditional pro-
bability distributions for a sequence of n adjacent bubble widths and heights. The
model dynamics is equivalent to an infinite system of coupled partial differential
equations for these n point functions. This system does not close, in the sense that
the equations for the j point functions, 1 =< j = n, depend on the n + 1 point func-
tion. We invoke the simplest closure hypothesis, assuming that the statistical proper-
ties of points are independent, or equivalently that the truncated two point function is
zero. In the next section it will be shown that this closure hypothesis excludes an
important range of phenomena. Let n(w,z,t) be a density function for the distribu-

tion of bubble widths w and heights z at time t. The closure hypothesis leads to a

nonlinear set of coupled partial differential equations for n. Namely
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ail'n(w.z,t) + 2 t%'n(w.z.t) =B -D.

Here B and D are the birth and death terms respectively, resulting from bubble
merger, while the left hand side expresses the noninteracting growth of a single bub-

ble. Specifically

B(w,z,t) = {n(w',z',r)‘n(w“,z”,t) lz(w’) — z2(w'")}| dw’,
D(w,2,1) = 2'q(w,z,t){n(w’,z',t) lZ(w’) — Z(w)|dw’,

where Ty and T} specify domains of integration, defined as follows:
Ty = Dyidth [\ Dmass () Dmerge
Ipb={w,2:0sws=sw'andz' - z = m(w)}
Uw.,z2:0=w =wandz -2z =mw)}.

Here Dign, Dmass and Dperge denote the conservation of width and mass and the
merger height constraints respectively.

e (X

Duign = {w', 2", w'', 2w’ + w

L)

=wandw',w'' =0},

]

Dmass = {w', 2, w", 2w’ 2/ +w'' . ' =wz},

’ ' " [} [ (X)

Dmerge={W y2h,w' 2w = w'and 2’ — 2" = m(w'")}
U {w,l'z',u""zfl: w'sw" and z" _z' =m(w’)}

In order to continue the analysis we assume a distribution in the heights : and bub-
ble widths w, which are characterized by time dependent parameters, such as their
means and covariances. Differential equations can then be derived for these parame-
ters, which however will not close, in the sense that time derivatives of the distribu-
tion will not in general lie in the same finite dimensional subspace characterized by
these parameters. Again we impose a closure hypothesis, which corresponds to a
projection of the dynamics onto a fixed finite dimensional subspace. We do not pur-

sue this point of view further in the present paper.

OUOUCOL O LSOO a0 S TN, o
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.an infinite strip, xg = x =< x;. The ratio of mean bubble size to interval width,

.9.

IV. A NUMERICAL STUDY OF THE STATISTICAL MODEL

There are two constants, ¢; and c3, which characterize the statistical model,

namely

1
~3(r) = ci(gn)? (3)
and, with the further simplifying assumption that m(r) is linear,
m(r) = cqr, (4)

cf. (1) and (2). To begin with, we consider the model in the x, z plane. Then the

mean bubble size fixes the x units, ¢3 fixes the relation of the z units to the x units,

and g fixes the relation of the - unit to the time units, c—z is a dimensionless free

parameter of the model. Moreover, the mean height fixes the origin of the z units.

. . . . varir
Thus the only essential parameters are the dimensionless variances —ri-l and

% and higher moments characterizing the initial data of the bubble size and

) e 2> — <x>? ) .
height distributions. Here var(x) = =x =S X Next we consider the model in

x1; — xg is a dimensionless measure of the distance of the data from the final equili-
brium state of a single bubble. If the strip is finite, zg < z < zj, then another dimen-
sionless parameter is introduced which measures the time at which the interface exits

as a fraction of the time to achieve the single bubble equilibrium state.

The essential phenomena which this model aims to capture is the increase in
average bubble size, and the consequent increase in average bubble velocity, resulting
from the process of amalgamation. In order to study the amalgamation quantita-

tively, we introduce a growth rate

A= 4dlnr
at ’

where r is a typical bubble radius. From (3), we see that

A= L =2 4dv
r v dr’

where v = 7 is a typical bubble velocity.
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The mean radius of the bubbles increases in time because the model is based on
bubble mergers and has no mechanism by which a bubble can split into smaller bub-

bles. As a result, the possible patterns of growth of the ensemble of bubbles can be

- -

conveniently discussed with reference to two extreme cases; uniform growth and

. &
. wmw ua

runaway growth. Uniform growth is the analog of a steady state and is characterized

. -

by a translation of the ensemble distribution in In r with time. Runaway growth is

the approach to a fixed point consisting of one large bubble. Each of these cases may
:,. be characterized by the dynamics of the support of the ensemble of bubble radii in
‘ In r space. In the case of uniform growth, the support of the bubble distribution in

In r space has 2 bounded length, which is O(1) in time. At the other extreme is the
0 case of runaway growth, in which the support of the bubble distribution shows
‘ marked increase in length as a function of time because the radius of the large dom-
inant bubble grows at a greater rate than the mean radius. To make these ideas
quantitative, we define the length of the support to be In rymax — In r where rpgy is
X the radius of the largest bubble in the ensemble and r is again a typical bubble

radius.

We also distinguish two time periods in the evolution of the bubble ensemble.

.;Z:: We suppose initially that the bubbles are generated by a random process, and thus
chg
":; N that the distribution of a given bubble (i.e. its radius and height, considered as ran-
3
“'f.? dom variables) is independent of its neighbor. In other words adjacent bubbles are

uncorrelated, and so the truncated two point correlation function is initially zero.
A Under this hypothesis, we give an approximate analysis which shows that the regime
e of uniform growth is unstable and that runaway growth occurs. We also present

numerical evidence which shows this trend very clearly.

i However, correlations between the sizes of neighboring bubbles do arise dynam-

ically even if they are missing initially. In fact a large bubble will grow rapidly in
S radius by the merger process when placed in a field of much smaller bubbles, but
- rather slowly when placed in a field of only slightly smaller bubbles. Thus after an
) initial period, large bubbles are more likely to have large neighbors: they expand
e until this occurs to limit or retard their growth. In this case the runaway behavior is
- self-limiting and a regime of uniform growth appears to be stable. We present
N numerical evidence for the stabilization of bubble runaway through the mechanism of

S dynamically generated nearest neighbor correlations.

b SN I WL NG I : O LN
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‘: First we examine an initial period of uncorrelated nearest neighbor distributions.
¢ “i
e To better understand the behavior of the two regimes of uniform and runaway
. . ¥
. growth, we derive an approximate formula for the growth rates A and Apay = rm—“ )
AR/ max
if&: -
) . . . . . . .
:in‘gt Consider a local region of space in which a single large bubble is growing in a
o BN . . . .
e uniform background field of small bubbles of radius r. We also assume a small dis-
N tribution of heights for the background bubbles. Because the velocity increases with
it-;;: radius, the large bubble will eventually get ahead of the background bubbles. The
: height of the large bubble is then fixed at a height c;r above the height of the small
bubbles. This constraint, combined with the conservation of mass in the merger pro-
.x;; cess, forces the rapid growth of the large bubble to be primarily in the lateral direc-
:f:“: tion. The rate at which bubble mass is created in a large bubble is 2rmaxci V g7max -
O, o ) ]
s Normalizing for the effect of motion of the small bubbles gives a corrected mass rate
- 1 1
;E;:‘. of 2rmaxc1[(grmx)7 - (gr)’[]. Thus the time rate of change 2rp,, of the diameter is
0 . . . . .
Ze‘i:e obtained by dividing the latter expression by the difference in height between the
s y g P g
.¢'l"
A small and large bubbles, c;r. Thus
W Tmax €1 1 115' %‘
) Amax = 5~ = =7 [(8rmax) © — (&r)°].
’-i:r: max 2
.:}v:' . o ' :
e When rpax >> r, equation (3) implies the approximate formula
'.';, A = i max g
;" M€ r Vmax
KX
o
:;tg:, We note that the growth rate Ap,y goes to = with the aspect ratio, if either rgay or r
'\'}‘y . .
is held fixed. Hence the name "runaway mode" to discuss the case in which this
oy occurs. It is convenient to consider In r rather than r as the basic variable in terms of
?3: which the radial distribution is specified. Thus we define (8In r)pa, through the for-
Lt
et mula
il rmax = exp(In r + (8In r)max)
%
Kno
L and then
a’(:l.
B Amax = (8) % fexp(——5—"5) — 1
»:n
o
Ty
R
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To complete our semi-quantitative analysis of the stability of the bubble ensem-
ble, we derive a formula for the growth rate A. Consider two adjacent bubbles hav-
ing radii r. and r_ respectively. For simplicity, we suppose that initially the bubbles
have equal heights. We determine the time to merge, ¢, for this pair, and postulate
that this time is the doubling time of the mean radius r. On this basis we determine
the growth rate A\ in the following equations

At,

2r=e""r

or
_In2
K———'m }

Moreover, t,, is determined from the equations of motion of the model, (3)-(4), to be

-1
1 1
c
Im = c—f- (gra)? = (gra)¥| r-.
We choose r. as
=exp(lnr * ﬂ'z‘—’-) :
Then
A= z—;ln Z(r% - r-)r
and taking ratios,
Fmax \
max
hmax _ 1 r- ( r ) -1

A In2 r

()7 - (Z=)7

((Bln r)m) -1
exp(—s-lg—r) -1

From these formulas, we see that two essential parameters which describe the

A
max _ lnl2 exp(— 812 r) (5)

input statistics have a critical bearing on the stability (uniform or runaway growth) of

the bubble merger process. These parameters are the variance and the maximum

AT FUR AL ME] , )
FOCTENERERER TR RIR "y f‘ys‘.} e DM RIT
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deviation, 8In r and (8In r)p,, of the In r distribution. Similarly the variance and
maximum deviation of the height / radius distribution are essential parameters. In
addition to acting as above as a cause of instability, the height variation can, at least
o - initially, contribute to stability. The mechanism is as follows. If small bubbles are
e placed ahead of and adjacent to large ones, they will retard temporarily the merger

process of those larger bubbles.

. . N '
Analysis of (5) shows stability (% < 1) or uniform growth for
(81 7) e

Inr L. (6)
»:l"i . However (6) cannot be achieved, except for the identically uniform distribution of
E", bubbles in which each has the same radius and height. The formulas (5)-(6) are

intended to be interpreted qualitatively rather than literally and thus we conclude that

control of rmay relative to r will be important in reducing the growth rate of the insta-

g ,
::::‘:. bility, and in delaying the onset of the runaway mode.

AN

:;::: If the initial distribution of In 7 or A has unbounded support (in the large r or h
o directions) then outlying large bubbles will necessarily occur and the infinite volume
,:'::; limit is necessarily unstable with an unbounded growth rate. In particular it would
45:2: appear that the runaway period would not be self limiting and that the subsequent
e ~ period of uniform growth would not occur. Our computations have not been suffi-
. ciently extepsive to determine whether uniform growth will always occur for the case
"»38 of an initial distribution with bounded support.

:;;: Next we discuss the relation between the infinite volume limit and a considera-
; tion of the model in a bounded strip xg = x =< x;. The effect of the finite volume is
E‘*:E in general terms to convert absolute statements into probabilities, so that for example
jf_‘?i: it would seem that for a finite volume and an initial distribution with unbounded sup-
f'{»: ' port, a finite (non-zero) probability exists that the self-limiting uniform growth
;‘,“ . region will not occur.

:EEE We illustrate these ideas by the analysis of a series of computations. Numeri-
:;:;: cally we observe a tendency for the runaway mode to be self-limiting. Large bubbles
‘ expand until they acquire large neighbors, after which uniform growth occurs. The
,; details of this phenomena depend sensitively on the large bubble tail of the distribu-
i tion, and so we do not yet have an accurate predictive capability for this region.

’ld ’ . a4 - - -
IOOUOLN \DoInG 3 M 8.%v2. % A ATy f O y - A Tp A0y <o 04 o N ! o y !
. VT AR B O Ot X X N ORI R: mmm%mm
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We analyze two computational solutions of the bubble model, labeled H (homo-
geneous) and L (with a length scale), in some detail. The initial distribution of

heights h and radii r was chosed to be uniform over the interval
h € [hg— 8h,hg+ dh), r €[rg— &r,rq+ &r).

Care was taken in generating the initial random interface to ensure that there were no
sequential correlations among the bubbles. The units for both runs were chosen such
that the initial average radius was <r> = 1, ¢ = 1, and the initial mass weighted
average velocity was <z> =1 . The initial average height was chosen to be
<h> = 0. Both runs had noisy height variation 842/rg = 1 . Run H had noisy radial
variation 8r/rg = 1, while run L had small radial variation dr/rg = 0.1 . To minim-

ize statistical fluctuations the computations were started with about 10,000 bubbles.

The run H shows an initial runaway region followed by uniform growth, as
described above. Run L shows two new features in addition to these general trends.
Because of the small initial variation in the bubble radius, the bubble radius distribu-
tion has a "resonance” behavior, or a multimodal nature, clustered about the values
nro, for the bubbles formed from the merger of n initial bubbles. The second prom-
inent feature of this run is slow start and the extended duration of the initial runaway

period, and the delayed onset of the self-limiting uniform growth behavior.

In Fig. 4.1H and Fig. 4.1L, we show the location in x, ¢ space of a sampling of
new bubbles as they are created by the merger of two or more neighboring bubbles.
Initially the mergers are randomly distributed. As time progresses the width of the
bubbles increases. The radial distribution of bubbles in In r space changes with time.
A sequence of plots at successive time steps is shown in Fig. 4.2 . At first the sup-
port of the distribution grows and then the shape of the distribution becomes smeared

out.

Many aspects of the merger process can be understood from time histories of
appropriate quantities. Fig. 4.3 is a plot of the log of the number of bubbles vs.
time. After an initial period the number of bubbles decreases exponentially. The
initial period is relatively large when there is a small variation in the radius and
hence the velocities of the bubbles. The mass weighted average velocity vs. time is

shown in Fig. 4.4 . After an initial period of slow increase the velocity accelerates

almost uniformly. This is an important consequence of the merger process. Mergers
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cause the mean bubble radius to grow which results in larger velocities. Similar pred-
ictions of uniform acceleration have been stated previously.!8:1* With the simple
model used here we are able to study the statistics of a large number of bubbles. We
find the magnitude of the acceleration depends sensitively on the bubble distribution.
In Fig. 4.5 the log of the minimum, mean, and maximum bubble radius vs. time is
plotted. This shows the growth of the bounds on the support of the radial distribu-
tion function. Of particular interest for the analysis of runaway growth is
IN(r ax/Tmean) VS. time shown in Fig. 4.6. We see that the support grows rapidly indi-
cating a runaway growth but then saturates resulting in a more uniform growth. In
Fig. 4.7 we plot the minimum, mean, and maximum height vs time. We call atten-
tion to the fact that the maximum height is the quantity which would be relevant to
the break up of a shell for example in the laser fusion problem, and that the max-
imum behaves qualitatively differently from the mean. Furthermore, this behavior
depends on the initial bubble distribution. The spread in height in units of the mean
radius is very much larger due to the runaway growth'when the initial variation in
radius of the bubbles is small than for an initial noisy variation in the bubble radius.
The saturation in the growth of the support of the bubble distribution and the transi-
tion to a uniform growth is due to correlations which evolve dynamically. In Fig. 4.8
we plot the radius-height cross correlation, or in other words the correlation between
the radius and the height of a single bubble. The large correlatiqn is as expected and
displays the fact that large bubbles move faster and get ahead of small bubbles. In

Fig. 4.9 the nearest neighbor correlation in the radius and height 1s shown,

N—I_I-Z("i“<">)(’i+1-<'>)

7,1,-2(ri-<r>)2

C,r =

71;_12("1'_ <h>)(hi+1— <h>)
NS hi=<h>)?

Ch

This indicates that bubbles grow rapidly until the adjacent bubble is larger than the
mean in radius or higher than the mean in height. Thus the runaway growth is a
local phenomenon that depends on a single large bubble in an approximately uniform
background. For a large region this local growth pattern may occur at many widely

separated places which eventually interact. Another way of seeing these correlations

N ot .r'.r(:a.( e {-{,IJ'-".(
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which limit the runaway growth is to consider the bubbles adjacent to the largest bub-

bles. We use as the criterion for selecting the large bubbles,

In Fig. 4.10 we plot the average bubble radius adjacent to .:e large bubbles in units
of the mean radius and the average height of adjacent bubbles below large bubbles in
units of the merge height for bubbles of mean radius. Again this plot indicates that
large bubbles run into adjacent bubbles with larger than mean radius and above mean
height. These runs imply that the dynamic correlations have an important effect on
the merger process and that a simple qualitative model as outlined in Section III

would require a non-trivial closure hypothesis to capture this phenomena.

In summary, the initial period of runaway behavior is characterized by a small
but exponentially increasing bubble acce'eration and a relative absence of nearest
neighbor correlations. The transition to uniform growth is caused by the dynamic
development of nearest neiéhbor correlations and is characterized by a relatively con-

stant but large acceleration.
V. NUMERICAL DETERMINATION OF THE MODEL PARAMETERS

A. The One Body Problem

We identify three regimes for the time development of the rising bubble and for
the falling spike, in the case of motion in an infinite strip, so that boundary effects
can be neglected. The initial time for the spike and bubble motion is set by the initial
amplitude of a sinusoidal surface. The perturbation of the initially flat interface is
small, and the time evolution of the surface can be described by the linearized Euler

equations. (See the Appendix.)

The isothermal equilibrium situation consists of a flat interface with exponen-
tially stratified atmospheres above and below the interface. We consider perturba-
tions of the unstable equilibrium in which the heavy fluid lies below the light fluid

and gravity is directed upwards.

The compressible Rayleigh-Taylor problem depends on three dimensionless

parameters: the density ratio D = -g-b—, where p, is the density of the heavy gas just
a
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below the interface and p, is the density of the light gas just above the interface, the
polytropic gas constant y (here we set y, = 7,) or other information to set the equa-
tion of state for the heavy and light fluids, and a parameter M defining the ratio of a

gravitationa! time scale to a sound speed time scale. (M defines a dimensionless

compressibility!9.) We take M2 = 5;-?— where A is the wavelength of the interface

perturbation and ¢, is the sound speed in the unperturbed heavy fluid. In place of the

Pb — Pa
pb+pa

parameter. Observe that the mass of the heavy fluid per unit cross section is finite,

density ratio D, the Atwood ratio A = may be used as a dimensionless

even though the strip it is located in is semi-iafinite, due to the exponential stratifica-
tion of the fluid densities. In fact this mass density is

€

Q=p, t[J’exp(—li.v) dy ,

where B = —}%

b

The initial growth at small time of both the spike and bubble is exponential.
The formulation of the linear stability theory, which governs the small time behavior,
was given by Bernstein and Book!® for the infinite strip. These results are given in
the Appendix, and are extended to apply to a finite strip with reflecting boundary

conditions at top and bottom. They are also extended to apply to a general equation
’ . . . CpO
of state. The dependence of the dimensionless exponential growth rate constant ?T

on the dimensionless parameters A and M is shown in Fig. 5.1 for y = 1.4. In Fig.
5.1, the dimensionless growth rate contours are equally spaced, with the difference
between two adjacent contours being .793. A larger value of M2 or A gives rise to a
larger dimensionless growth rate, since gravity increases with M2 and renormalized
gravity increases with A. At intermediate times, the spike enters a period of free
fall. The bubble may have an intermediate period of free rise, and if it does so it is
or may be Rayleigh-Taylor unstable and is therefore potentially unstable to splitting
through the development of a spike at its center. At late times both the bubble and
the spike approach an asymptotic constant velocity due to the form drag and the finite
total mass supported above the bubble and spike. Although not present in the model

equations discussed here, an experimentally more realistic late time behavior for the
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spike would be a breakup into droplets which then also achieve a terminal velocity
due to form drag. The regimes of free fall and of the approach to an asymptotic
velocity for the spike can be modeled by a particle falling under the influence of

gravity g with a drag coefficient b and limiting velocity vierm. The model problem
V== b(v = Vierm )
has the first integral
V = vierm + (Vo = Vierm) exp(—b(1 — 1g)) (8)

where b is the drag coefficient, vg is the velocity at time 1g and vy is the terminal
spike velocity. Actually, equation (7) is the expansion of the dynamic equation in a
neighborhood of the terminal velocity keeping only the leading term (the term linear
in the velocity). Therefore equation (8) should be valid only in the terminal velocity
region. To understand the behavior of the velocity over a larger domain (including
the linear and free fall regions), the contribution from the higher order terms should
also be included. To the third order in velocity, the dynamic equation can be written

as
v =aw + av? + apd. (9)

One can see by inspection that equation (9) has qualitatively the de\sired form. Obvi-
ously, it has a gritical point v = 0. By suitable choices of a3, a2 and a3, it will have
another critical point |v| = [Vierm| > 0. In general, a third order algebraic equation
should have thr;e solutions. But, as we will see, one of the solutions is not physical.
The critical velocity v = 0 corresponds to the velocity for a perturbation with infini-
tesimal initial amplitude at the interface. The system will leave this critical point
exponentially and it approaches the v = vy critical point exponentially also. We
now develop these facts systematically, and also determine how the terminal ve]oci.ty,
renormalized gravity in the free fall region and drag coefficient are related to the

coefficients of equation (9).

In the earlier stage of the development, one may neglect the terms proportional
to v2 and v3 in equation (9) due to the small amplitude of the velocity. Then equa-

tion (9) can be approximated as

v =g (10)

R eV e
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This equation has the solution
v = vgexpla)(t — 19)). (11)
We conclude a; = o, by comparison to the results from the linear theory. (See the

2
Appendix.) By a dimensional argument, a; must have the form a; = — ZKU? and

3
ay= — &%z-, where x and § are dimensionless constants and g is (the unrenormal-

ized) gravity.

The concavity of the curve representing velocity versus time is determined by

the derivative of equation (9), i.e.,

d¥v _ _ 12_ . L :
d7- (a 4k Py V 3&?‘ )“ (12)

Then the curve at velocity v is concave up or down, depending on whether the
derivative of the acceleration is positive or negative. At the inflection point the
derivative of the acceleration vanishes. If we define a velocity v¢, determined by the

equation
o? al ,
ag - 4K—g"Vf - 3§'§TVf = 0, . (13)

then the linear theory region corresponds to the range where v << v¢, the terminal
velocity region corresponds to the range where v >> vq, and the free fall region

-~

corresponds to the range where v = vy

The terminal velocity vierm is determined by setting the acceleration in equation

(9) to zero, i.e.

2 3
av - 2ng-v2 - g%,—ﬂ = 0. (14)

Obviously, v = 0 is not a solution for the terminal velocity. The other two possible

solutions are

1
v = Gk + (4 D7) (15)
and
1
vt o= %—g-[x - (x2 + §)7). (16)

- - P
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Physically, the system starts with a perturbation at the interface. The initial velocities
of the spike and bubble are determined by the linear theory. The terminal velocity
must have the same sign as the initial velocity. If both solutions v* satisfy this sign
condition, then the solution with the smaller magnitude is the terminal velocity, since
the system starts at the critical point v = 0 and will meet the smaller amplitude solu-
tion first. Let us consider the spike first. We choose 0 < g. For 0 < §, only v* has
the same sign as the initial spike velocity (0 < v*). For § < 0 and x < 0, both v~
and v~ are negative and neither satisfies the sign condition. For § < 0 and 0 < «,
both v* and v~ satisfy the sign requirement, but v* has the smaller amplitude.
Therefore v*, if it is positive, is the only physical solution for the terminal velocity
of the spike, while v~ is always an unphysical solution. Similarly, v~, if it is nega-
tive, is the only physical solution for the terminal velocity of the bubble and v~ is an
unphysical solution. Furthermore, for sufficiently negative values of & (€ < —«?),
both v* and v~ become complex quantities. In this case the terminal region does not
exist for the model system (9) in that parameter range. For the same reason equa-

tion (13) also has at most one physical solution. For the spike

1
vi = ggplax — (@x? + 397, (17)
and for the bubble N
1
v = ﬁ[zx + (4k2 + 36)7). (18)

Moreover renormalized gravity in the free fall region is given by
a? a3
gr = |ovg — ZK?WJ - E-g—TVf3 l. (19)

We rewrite equation (9) in terms of the terminal velocity. Then the coefficient

of the linear term is the drag coefficient, i.e.

L= —b(v ~ Viem) + OL(V = Viern)?)
where
o? o’ ,
b=—(ag - 4K?Vtzrm - 35‘;2'Vxerm)

1
20{1 + -'E‘-[x + (k2 4+ g)T]}. (20)
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Here the plus sign is for the bubble and the minus sign is for the spike.

The solution for equation (9) is

—_pl D= gt
2 [ J_ln( vil 1 l(l" v ll)

FT e lE N D T T e e e

* v'(v'l— vy e Ilvt: "ll)] 2\
where v, = v(t) is the velocity at time ¢, and v™ and v~ are given by equations (15)
and (16). This is the formula we use to fit the velocities of the bubble and spike
simultaneously over all three different (linear, free fall and terminal) regions. There
are two free parameters in (21) which can be adjusted to fit the computed curve of
spike velocity vs. time, as shown in Fig. 5.2. The computed spike and bubble veloci- |
ties were smoothed by averaging before plotting to eliminate oscillations of a numeri-

cal nature in the data.

In Fig. 5.3, we illustrate the spike dynamics in three (linear, free fall and termi-
nal) regions. Renormalized gravity corresponds to the maximum acceleration over
the whole time domain. This is a consequence of our discussion concerning the con-
cavity of the velocity curve. When the system goes from the linear region to free
fall, the deviation of the linear theory from the results for the full Euler equation
beco;es substantial. Likewise before the system enters the terminal region, the
results from the asymptotic behavior (Eq. (7)) give a more rapid deceleration than

the true value.

In Fig. 5.4, we present the dependence of the gravity renormalization factor
gr/g defined by equation (17: on the density ratio D. The data (from reference 20)
for two dimension incompressible (M? = Q), one component (A = 1) flow are also
shown. The incompressible data may be affected by the large initial amplitude (0.5)
used in the cited computation. Our computational data show that the renormalization
factor depends linearly on the Atwood ratio A and gg = .5Ag for the bubble, while
gr = Ag for the spike.

At equilibrium, the right side of equation (15) vanishes, and in this case we
have an expression for the drag d = L, ()¢ where L., is the combined width of the
bubble and spike. () is the mass density given at the beginning of this section. It is

convenient to introduce the dimensionless drag coefficient of the spike following

e AR R R
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reference 20

d

Cp=2—v—,
b PaViermls

(22)

where L, is the width of the spike tip. Substitution of the expression for d into above

equation yields

Lb+: D
Cp=2— , (23)

P Ls Bvium
The computed drag coefficient Cp as a function of A and M is plotted in Fig. 5.5 for

vy = l.4.

The terminal Mach number, vim/Co. is plotted as a function of the Atwood ratio
in Fig. 5.6. Here ¢, is the sound speed of the heavy material just below the tip of the
spike (Fig. 5.6a) or the bottom of the bubble (Fig. 5.6b). We note that the terminal
Mach number has a significant dependence on the compressibility M2. The data for
D = 10 and 100 are not included in the plot because these systems did not reach the
terminal velocity region at the final computational step. At the termination of these
runs, the dimensionless heights which are the ratio of the amplitude of bubble or
spike to the wave length are in the range from 1 to 2.5, but the systems are still fully
in the free fall regime. The spike and the bubble velocities do become supersonic
(relative to the sound speed ;\'f the heavy gas) before the final computation step in the
D = 10 and 100, M? = 2 cases. For D = 100, M? = 2 the spike Mach number
reaches 2.7, the bubble Mach number reaches 2.3 and they are still growing. How-
ever in all cases considered here, the bubble and spike velocities are subsonic relative
to the light gas. If the light fluid is a vacuum (D = %, A = 1) then the spike is
expected to remain in free fall. This behavior is consistent with the behavior of an

incompressible fluid.?!

A dimensional analysis of the Euler equation shows that the terminal velocity

vierm Of the bubble scales according to equation (3)

1
Wierm| = ¢1 (81 %, (24)

where c¢; is a function of the fundamental dimensionless parameters D, M and ¥y
alone and r is half wave length, i.e. the radius or half the width of the single mode

computation. Fig. 5.7 illustrates the dependence of the constant ¢; on D and M2 As
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noted above, the systems with high density ratios have not reached the terminal velo-
city region at the end of the computation. Therefore the terminal velocity can not be
determined in these cases. However, the velocity at the last step of the computation
provides us with a lower bound for ¢, in these systems. For D = §, M? = §,
¢1> .36, for D = 10, M>= 5, ¢; > .46 and for D = 5, M* =2, ¢, > .47. The
data for a two dimensional (from reference 21 and 22) incompressible (M2 = 0), one

component (A = 1) fluid is also shown in Fig. 5.7. There is an expectation that

1
¢y = const A 2. In fact for both the linear and free fall regimes, gravity occurs in the

form Ag. If this remains the case for the terminal velocity regime in equation (24),

1
then ¢; would be proportional to AZ. Our data indicates that c; has a significant
dependence on M2 Even allowing for an M? dependence in the constant of propor-
tionality, the data does not fit this relation particularly well, especially with the inclu-

sion of the lower bounds for systems not in the terminal velocity region.

The interaction of the spike and bubble with waves reflected from the boun-
daries leads to a slowing down of their motion, and, for motion in a bounded region,

defines a further time regime for the fluid motion.

We have made a series of computations sampling the development of the single
finger as a function of D. Figs. 5.8-5.10 present plots of the interface, density con-
tours, and pressure contours for D = 1.5, 10, and 100 and M2 = 5. Fig. 5.11-12
presents plots of the interface for D = 2 and 100 and M2 = 2. Note that the flow is
subsonic in Fig. 5.8 and supersonic relative to the heavy gas in the final frame of Fig.

5.12.

Because there are two dimensionless parameters in the formulation of the prob-
lem, D and M? (with the equation of state held fixed), there should also be two quali-
tative features in morphology of the fingers in the deeply nonlinear regime, which
change in their relative importance as D and M? vary. The effect of increasing D is
seen in a trend toward a thinner spike and less roll up shed off the edge of its tip.
The effect of increasing M2 leads to the deposit of a strip or trailing filament of
material shed off the edge of the tip in contrast to the highly wound up vortices
which are observed in the incompressible case. The increase of M? leads to a

dramatic increase in terminal bubble and spike Mach numbers. For large values of

M2, a bow shock forms in the front of the bubble and a complex system of shocks
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form in the stem of the spike. The present calculations are only mod'erately super-
sonic and so the shocks are weak. However, due to the large value of gravity and the
exponential stratification of the pressure, the pressure changes very rapidly in a few
mesh layers even in the absence of shock waves, so that these weak shocks are not

clearly resolved in the present calculations.

B. The Two Body Problem

In Fig. 5.13-14 we show a series of frames which give the time development of
a bubble merger. The parameters for this solution are D = 2, 10 and M2 =2 . A
detailed study of the two body problem would be an interesting topic for future
work, and is required to complete the determination of the parameters in the Sharp-
Wheeler model and their dependence on the dimensionless parameters D and M? of
the compressible Rayleigh-Taylor problem from first principles. In any case we
believe that the preliminary result reported here indicates that this goal is feasible,

using the front tracking method.

C. Heterogeneity

Heterogeneity can have an important effect on solutions. This is evident from
our study’ of the incompressible Rayleigh-Taylor problem. A detailed analysis of
this topic is postponed to a subsequent paper, but for the present we observe that
heterogeneity in the form of turbulence in the flow field could lead to pinch off of
the spike or of the trailing edge of the spike roll up, as well as the break up of the
spike into droplets. Any of these phenomena would effect the drag coefficient and
thus the terminal velocity of the spike. We expect that renormalized gravity, which

characterizes the free fall regime, should be less sensitive to heterogeneity.

These preliminary results also suggest additional phenomena, such as bubble
pinch off, true multiphase flow and a possible variety of multiphase flow regimes.
The bubble mergers presented here actually suggest the regime of slug flow, which is
recognized as a regime in the multiphase flow of fluids in pipes. In addition there is
good reason to suppose that neighboring bubbles influence one another. For exam-
ple, two large and neighboring bubbles might have a collective terminal velocity

which is larger than either would have individually. The extent and importance of
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such additional phenomena is left to further studies as is the task of modifying as

necessary the statistical model for bubble merger.

VI. VALIDATION OF SINGLE FINGER COMPUTATIONS

In the small amplitude regime, the computed solution can be compared to the
analytic solution, derived in the Appendix, of the linearized equations, where the
finger is considered as a small amplitude perturbation of the flat interface. At any
amplitude, mesh refinement produces a validation test of the solution. In addition
we have determined that the solution is independent of various numerical parameters
which adjust the algorithm, and some of the these results are presented here. In par-
ticular, we study the effect of the initial amplitude of the perturbation, the effect of
the boundary condition at the top and bottom of the computational domain and the

effect of the remeshing (redistribution) of points along the interface.

We study first the effect of mesh refinement. Obviously the finer the mesh
which is used, the greater is the level of detail which one can see. Convergence
occurs in the sense that structures which occur on the coarse grid are duplicated on
the fine grid. In Fig. 6.1 we illustrate mesh refinement by a factor of 4 in each linear
dimension. We note that the degree of resolution we obtain could not be achieved on
comparable grids without the use of interface methods. In this figure D=10 and
M?2=0.5. As we see in Fig. 6.2, the positions of the spike and the bubble are hot
very sensitive to mesh refinement. The reason is that convergence for these featufres
of the solution has largely occurred on the coarse grid, and so the mesh refinement
only affects the detailed structure of the interface and in particular the secondary
instabilities on the side of the spike. Secondary structures, which occur on the finest
grid only, as in Fig. 5.9 and Fig. 6.1 are not confirmed by the validation studies
presented here. They are somewhat sensitive to numerical parameters such as fre-
quency of remeshing; frequent remeshing of the interface is equivalent to smoothing
and tends to suppress these secondary structures. We anticipate that the secondary
structures also depend sensitively on surface physics effects, such as surface tension

or a viscous diffusion layer.

In the small amplitude region, the interface is smooth and nearly flat. In that

region, the spike and bubble grow exponentially. We define a dimensionless
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y from the nearest boundary and the first arrival of a reflected signal starting initially
x at the interface. The first of these times marks the beginning of a quantitative diver-
gence between these two curves and the second marks the beginning of a qualitative
, difference, with the boundary reflected signal causing the velocity to begin decreasing
:s : in magnitude in the shorter region. The other anomalies in the velocity vs time plots
:e are coarse mesh phenomena, and clearly have nothing to do with boundary effects, as
can be seen by the fact that they occur at the same locations for the two runs with dif-
ferent boundary locations. To further emphasize this point we also plot in this figure
nE a finer grid computation of the same quantities for the shorter domain.
» At large time, it is necessary to remesh the interface due to the large scale dis-
tortions in the geometry. It seems that remeshing at on the order of at least every 20
; time steps is required. If the interface is remeshed more frequently, then the secon-
; dary structure of the surface waves on the side of the spike are suppressed but the
i position of the bubble and spike is not greatly affected. For the extreme case of
; remeshing every time step, however, the growth rates of the ‘bubble and spike are
‘; affected, as we have seen.
0
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E APPENDIX: THE LINEARIZED COMPRESSIBLE RAYLEIGH-TAYLOR
2 THEORY
,"_ We derive the equations governing the initialization of the single-mode
:: Rayleigh-Taylor computations. Although our derivation is given explicitly for the
3 single-mode problem, the solutions for the multiple-mode Rayleigh-Taylor computa-
:: tions can be obtained by the superposition of the single-mode solutions, since the
equations are linear and different modes do not couple with each other at this order.
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Our analysis extends results of ref. 19.

The two-dimensional Euler equations for a compressible, inviscid, gas are

ap apu apv _

dat + ox + dz 0 (AD

dpu ., d(pu2+ P) . dpuv _

st e tTa 0 (A2
. 12

6:; + aal;v + a(maz‘*' P) _ 0g (A3)

Lip(dg? + ) + StouFq? + i) + Llov(3q? + D1 = pvg. (A4)

where u is the x component of the velocity , v is the z component of the velocity,

g2 = u? + v2, e is the specific internal energy and

i=e+i;- (AS)

is the specific enthalpy. The thermodynamic quantities pressure and density are

related by the equation of state,
e = e(p,p). (A6)
Suppose we have a perfect flat interface between the light gas (above a) and the

heavy gas (below b). This isothermal equilibrium state is determined from the fol-

lowing equations:

JaP

_a_zo = pog (A7)
F) Py

— + —) =

az(eo p0) 0 (A8)

eo = e(Po,po). (A9)

Here the subscript zero represents the solutions of the isothermal equilibrium state,

and gravitation is taken to point in the positive z direction.

To analyze the Rayleigh-Taylor instability, we imagine that the interface
between the light and the heavy gas is perturbed as a sine wave with one mode. Since
the perturbation is small, the state of the system should be close to the solution of the
isothermal equilibrium state on the short time scale. Therefore to linearize the equa-

tions (A1)—(A4) and (A6), we write each function as its zeroth order (equilibrium)

A%
A

. \.\»5’;\;!
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i soludion and a first order correction,
. P = Py + &P (A1l)
Vs
':g- - u = du (A12)
. . v By (A13)
\.;.f‘! e = eg + de. (A14)
f;;:i; Here we have used the results that the zeroth order solutions for velocities in the x
Wty
W and z direction, ug and vg, are zero. The linearized equations are
s er adp 9du ady fﬂ)_ =
:Lf:: ar TPy TPt 5; B =0 (A15)
_L:’T‘.Q
A
"5:: Iy 668111 + 665:’ 0 (A16)
. ad ddpP
e Py + g = 8% (A17)
;;E.
B 3% 3% . 38u . 2 dpo
;:.;:: eo*;,p- + Po—gt£ + poio3, * Polo—af + g, v
";;t' ai() -
a + po3,78v = pogdv (A18)
A
i
et ddeg deq 3dp , 9€, 3OP
R 31~ dpg or | FPg ar (A19)
».‘.-; By using equations (AS), (A8), (A15) and (A19), equation (A18) can be rewritten as
?i"‘
o deg asp 0o 20 28P
:-t:::: (pOGPO - ) apo r Pogﬁv. (A20)
Since all the coefficients are the functions of z, we can write each function as
4 .
j;;‘;@:f bf; = exp(ot+ikx)dfi(z), (A21)
’.:';I . -
g.r:? for 8f; = 8p,5P,bu,8v. Here 8f; is a function only of :z. Each value of o and &
ol corresponds a single mode. By using equation (A2l), the linearized equations
A
i“ become
.'o:?. d
e 0bp + ikpodii + poi}‘— + i =0 (A22)
apodii + ik8F = 0 (A23)
Ny

:"l’ '0‘ l'r"“ by .‘0‘ O ‘4"'(
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g dsp |
iy } - — -
.;: apodv + a3 g8p (A24)

| Py deg o - .
o O(Po apo 5p - rr 0903;535}’ = pogdv. (A25)
F" '
:",; After eliminating the functions 84 and 8V, we have two equations for the functions
i‘:'f* 8p and 8P,

'y 284 __d_. A 8P d2 5 =
.,"', o%dp + 84 d3p + k<8P FSP 0 (A26)
e 5
f.:.}. 2 €9 - ___ - d 3 =
oXpogss %)sp + o2pg=pr aP ==28P + g g3-8P = 0. (A27)
!,-‘.;' Finally, we obtain a second order ordinary differential equation for 8P,
‘;.-‘.A SP -
N Co )4—,— + )L+ coa)8F = o, (A28)
1 .“
'_ where
o
A deg Py deg
N, = — - c— —— — - 9
;I.;?;' Co2) [ 030 Po ) |P03po Po 17 (A29)
o e deg Py g2)7!
o . Ci(2) = [Po 3P, + 1] [Pom %o o ] +
e
';::c &22_1 deg _ Po _ g_!_ (A30)
::': o? dz |P93po

* deg deg Py o?
Jt':: Colz )—Opoapo [Po:,-‘;v rrar:l
KX
“e,:‘.:t
,i'.\ -1
A0 d deg deg Po 2 2
gt a—— t——— —— . — - -—

247 |Posm, ["°apo =~ %2 k2. (A31)

A,fl:"'
X
::' Once this equation can been solved, all the other three functions can been obtained
;7‘: from 8P. 8p can been obtained from equation (A27), 8ii from equation (A23) and
."l,‘,C

' 5V from equation (A24). These equations hold for the light and heavy fluid
E:::; separately. They are coupled together by the boundary conditions at their interface;
P M)
’E:::E namely, that the pressure P and normal velocity are continuous to first order in 8v.
]
::::: This determines the growth rate o.

" To illustrate our results, we assume our system is a stiffened polytropic gas??

: The specific internal energy for a stiffened polytropic gas is
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"'tt _(P+'YPJ)

Ee ¢TTy- D (A32)

where vy in a dimensionless constant and P, is a constant with the dimension of pres-

sure. The unperturbed gases are in exponentially stratified isothermal equilibrium:
Pa = Pa0exp(Ba(z — Zingc)) (A33)
Ps = Proexp(Bs(z — Zintc)) (A34)
iy where zjnge is the 2z position of the unperturbed interface, B = -}§- and

g _ Y(P+PY) T
c= [_p—] .

alvs We suppose that the position m of the perturbed interface is given by
R8P N = Zinde = Aini€Xxp(or)sin(kx) , where o is the growth rate of the surface and k is
AN the wave number of the perturbation and A;,; is the amplitude of the perturbation at
e interface at time 1 = 0. We assume that the problem is periodic in x with reflecting
boundaries at : = zpgry , Where zpyy is the top (bottom) of the computational

domain.

The linearized Euler equations (A15)—(A18) become

o8 + ikpodil + o + Bpod? = 0 (A35)

opodii = —ikdP (A36)

;;‘.i, apedi + 2L = g5p (A37)

adv.

odP + B(Pg + Ps)8V + y(Po + P)(ikdu + =

=) =0, (A38)

and equation (A28) becomes

oy 3%P _ yg 35P _ |g . ;2 - De%? |55 _
R OF -y [-C-z-+k+ﬁl—o,-c¥—ap—o. (A39)

N Now assume

86 ~ exp (o + B)(z = zin0) (A40)

e 5p ~ exp ((a + Bz - zintfc))‘ (A41)

(411.1

, A .
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8, 87 ~ exp (a(z — zingo) ). (A42)

From equation (A439),

1
2,2 2 — ol |
(!z=—‘zlcg2'i[14—§—+%z—+k2+-(1—c%2§-k—] . (A43)

We impose the boundary conditions 8v(z = zpary) = 0. The solution of the linear-

ized Euler equations is then

(y = Dg? + c%a?

8P = — eXp(a—(Zide = Zoay)) — eXp(a+(Zme — Zoay) P ™
exp(a-(z — zpany)) _ expl@-(z — zban)) |,
(y— Dg +a-c? (y- g+ aict
exp(or + ikx)exp(B(z = Zingd)), (A44)
8p = -1 [G2P + (y—1)g-L8P ] (A45)
(y=1)g? + c%o’ " >
bv = ——(g8p — L5P) (A46)
apy 8% ~ 7z ’
“ou = —ikgp. ' (A47)
apo

Note that dv(z = zj40) = gAexp(at + ikx) is continuous at the interface. The growth

rate o is determined from the condition

8P, — 8P = [3"{’7 - a%’;—] A = (py ~ po)gA (A48)

which expresses the continuity of the pressure at the interface
Pi(zipgc + M) + 8P4 = P_(Zipgc + M) + OP- . (A49)

Here the subscripts +(—) denote variables evaluated just above (below) the inter-
face. We find

(y — 1)g? + c,%0?
- X
exp(ag-(Zingc = Zbdry)) — €XP(@g+(Zintfc ~ Zbdry))

(P — Pa)E =

exp(ag-(Zinge = Zbdry)) _ eXp(@a+(Zindc — Zbdry))
‘ (Y = Dg + ag.c?

(vy— g + as-cq
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.::. N (y — 1)g? + c;%0? y
X exp(@p-(Zinge — Zbdry)) ~ eXp(@p+(Zinttc ~ Zbdry))
S exp(ay—(Zingc = Zbdry)) _ €Xp(@p+(Zingc = Zbdry))
- (AS0

‘t; Pl o= Dg + ap-cp* (v = g + apecy? (A30)
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FIGURE CAPTIONS

Fig. 4.1 The location in x, r space of bubble mergers. (H) corresponds to the

run H, and (L) corresponds to run L.

Fig. 4.2H bubble radial distribut;'on vs. In(r) for run H at a sequence of times.

Fig. 4.2L bubble radial distribution vs. In(r) for run L at a sequence of times.
Different scales are used between the ranges from 0 to 60 and from 60 to 5200 in the
y direction in order to display both the large cluster of bubbles near r = rp and the
remainder of the distribution.

Fig. 4.3 In(number of bubbles) vs. time. (H) corresponds to run H, and (L)
corresponds to run L.

Fig. 4.4 average velocity vs. time. (H) corresponds to run H, and (L)
corresponds to run L. The derivative of the velocity versus time in (L) is about 7
times larger than the deriva:ive in (H).

Fig. 4.5 log of minimum, mean and maximum bubble radius vs. time. (H)

corresponds to run H, and (L) corresponds to run L.
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Fig. 4.6 In(rmax/rmean) Vvs. time. (H) corresponds to run H, and (L) corresponds

torun L.

Fig. 4.7 minimum, mean and maximum bubble height vs. time. (H) corresponds

to run H, and (L) corresponds to run L.

Fig. 4.8 radius, height cross correlation vs. time. (H) corresponds to run H, and

(L) corresponds to run L.

Fig. 4.9 radius and height correlation vs. time. (H) corresponds to run H, and

(L) corresponds to run L.

Fig. 4.10 The expected scaled radii r. and height };c_of bubbles adjacent to large
bubbles are plotted as a function of time. The y axis is in units of dimensionless
length. This plot should be contrasted to Fig. 4.5 and Fig. 4.7, which display mean

radius and height without restriction.

Fig. 5.1 The dependence of the dimensionless growth rate on A and M?. The

difference between two adjacent constant contours is 0.793.

Fig. 5.2. Plots of spike velocity and bubble velocity versus time are shown with
the best two parameter fit to equation (21) superimposed, for the parameter values
D =2,M?=0.5,v = 1.4 . The numerical results are obtained by using a 80 by 640

grid in a computational domain 1 X 8.

Fig. 5.3 The comparison of the spike velocity and the spike acceleration of the
numerical result to its linear and large time asymptotic behavior for D = 2, M2 = .§
and y = 1.4. The solid lines are the numerical results obtained by using a 80 by 640

grid in a computational domain 1 X 8.

Fig. 5.4 The plots of the renormalization factor for gravity versus the Atwood
ratio for (a) spike and (b) bubble. For comparison, the straight lines which are pro-
portional to the Atwood ratio are also plotted. The data for a one component,
incompressible fluid (A = 1, M2 = 0) is taken from reference 20.

Fig. 5.5 The plot of the spike drag coefficient Cp versus the Atwood ratio for
M?= 5(+) and 2(X) and y = 1.4. Note that for A = 1, Cp = 0 on theoretical
grounds and this suggests an empirical relation Cp = const (1 — A) with the constant

dependent on M.
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;:f: Fig. 5.6 Plots of Mach number (the ratio of the terminal velocity to the sound
:E:‘; speed of the heavy gas) of (a) spike and (b) bubble versus the Atwood ratio. The j
high density ratio systems have not reached the terminal velocity region at the end
s the computation. Therefore the terminal velocity can not be determined in these sys-
: .:‘E tems. The spike and the bubble velocities at the last computation step are supersonic
Egz (relative to the sound speed of the heavy gas) in the D = 10 and 100 cases. In the
N incompressible case (M2 = 0), |viermy/c| = 0 by definition.
;‘!‘ Fig. 5.7 A plot of the constant c; versus the square root of the Atwood ratio for
%:‘.' D = 2and 3, M2 = 5(+), 2(X), and y = 1.4. The values of c; calculated from the
g two (* and A) dimensional incompressible (M2 = 0, A = 1) theories are also shown.
e The value for (*) comes from reference 21 and (A) comes from reference 22.

',C Fig. 5.8 Plots of the interface position, density and pressure contours for
::’t D =15 M2=.5a=.015,y = 1.4 in a computation domain 1X6 with a 40 by
'._, _ 240 grid. Only the upper two thirds of the computational region is shown in the plot
i‘; because nothing of interest occurs in the remainder of the computation. (a) The
interface position for successive time steps. (b) The density contour plot. (¢) The
e pressure contour plot.
ahh ‘ Fig. 5.9 Plots of the interface position, density and pressure contours for
g' D = 1(}, M= 5,a=.015,y=14ina computation doméin 1X4 with a 40 by 160
ZE grid. (a) The interface position for successive time steps. (b) The density contour
';" plot. (¢) The pressure contour plot.
iiii‘:s Fig. 5.10 Plots of the interface position, density and pressure contours for
:;' D=100,M2= 5,a=.015,y=14ina computation domain 1X10 with a 20 by
RiX 200 grid. Only the upper four fifths of the computational region is shown in the plot
Ps because nothing of interest occurs in the remainder of the computation. (a) The
S interface position for successive time steps. (b) The density contour plot. (¢) The
! pressure contour plot.
,_ Fig. 5.11 Plots of the interface position, density and pressure contours for
:: g D =2,M?=2,a = .015,y = 1.4 in a computation domain 1X8 with a 80 by 640
':: grid. Only the middle portion of the computational region is shown in the plot
o because nothing of interest occurs in the remainder of the computation.

o]

g

s
4"‘ £y g Vel

AN AT - AT Y : . et
IS Wy ; / ] \
bt R R N e ST e K e R




s
K2 -37-

":: Fig. 5.12 Plots of the interface position, density and pressure contours for
E:EEE D =100, M* = 2,a = .015, y = 1.4 in a computation domain 1X6 with a 20 by 120
et grid. (a) The interface position for successive time steps. (b) The density contour
!ifz plot. (¢) The pressure contour plot.

;:, Fig. 5.13 Plots of the interface position, density and pressure contours of a bub-
ffo‘;: ble merger for D =2, M?=2,y=141ina computation domain 1xX4 with a 75 by
" 300 grid. (a) The interface position for successive time steps. (b) The density con-
:3"“: tour plot. (¢) The pressure contour plot.

::E:: Fig. 5.14 Plots of the interface position, density and pressure contours of a bub-
i ble merger for D = 10, M2 = 2,y = 1.4 in a computation domain 1X4 with a 75 by
5‘":@ 300 grid. (a) The interface position for successive time steps. (b) The density con-
:g,%: tour plot. (¢) The pressure contour plot.

::‘:f? Fig. 6.1 Positions of the front at a sequence of time steps for D = 10, M2 = 0.5
'; ‘ and a = 0.015 by using 40 by 160 and 10 by 40 grids. The finer grids resolve the
! more detailed structure of the interface.

f Fig. 6.2 A comparison of the position of the spike and the bubble for D = 10,
o M?=0.5and a = 0.015 using (A) 10 by 40, (B) 20 by 80, (C) 40 by 160 and (E) 80
_'Ei‘t": . by 320 grids. Plot a is the position of the spike. Plot b is the position of the bubble.
: o For comparison, the linear theory is also shown. As can be seen, most of the compu-
’:;;S: tation is out of the linear regime.

jj”" Fig. 6.3 A comparison of the spike and the bubble velocity and position for the
25 linear theory and the full Euler equations. Here D = 10, M2 = 0.5 and a = 0.001. A
;: ":’ 40 by 160 grid was used in a computational region of size 1 by 4.

Fig. 6.4 A comparison of different initial starting amplitudes for D = 10,
E‘é o M? = 0.5,a = 0.004 and A = 0.01 using a 40 by 320 grid in a computational region
;S‘ of size 1 by 4. The time plot is terminated at t = 4 because for a = 0.004, the one
;‘:;,' way reflected waves in the heavy gas arrive at the interface shortly after that and the
T agreement between these two runs does not and should not persist after this time.
?: Fig. 6.5 A comparison of different redistribution frequencies for D = 10,
‘:, M? = 0.5 and a = 0.01 with a 40 by 160 grid in a computational region of size 1 by
.;, 4. f = 1,15, 100 corresponds to redistributing the front every 1, 15, 100 time steps.
f::: Plot a is for the position of the spike. Plot b is for the interface. Compare to frame
!
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;: 2 of Fig. 6.1.

%

Fig. 6.€ A comparison of boundary effects for a domain of shape 1X4 (A) and
X 1x8 (B) with 10 by 40 and 10 by 80 grids respectively. Here D = 10, M2 = 0.5 and
Q a = 0.015. The one way reflected wave corresponds to a signal from the nearest
:. boundary. The two way reflected wave corresponds to a signal starting from the

interface. Plot a is for the velocity of the bubble. Plot b is for the position of the
iy bubble. For distinguishing the boundary effects from the grid effects, a 40 by 160
grid curve (A’) in the computation domain 1X4 is also plotted as a dotted line in the
plot a. The wiggles which are common to A and B (and missing in A") are grid

effects, while the divergence between A and B, marked by the arrival of the one way

and two way reflected signals are pure boundary effects.
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Fig. 4.1 The location in x, ¢t space of bubble mergers. (H) corresponds to the run H,

and (L) corresponds to run L.
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Fig. 4.2H bubble radial distribution vs. in(r) for run H at a sequence of times.
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b 5200 5200

23
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& h u !
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"S‘t 0—4 0

Wy -1 9 -1 9

. (L)

et Fig. 4.2L bubble radial distribution vs. In(r) for run L at a sequence of times. Different
"t scales are used between the ranges from 0 to 60 and from 60 to 5200 in the y direction
e in order to display both the large cluster of bubbles near r = r, and the remainder of
{'.: the distribution.
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Fig. 4.3 {n(number of bubbles) vs. time. (H) corresponds to run H, and (L) corresponds

torun L
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(H)

‘0
e (L)

) Fig. 4.4 average velocity vs. time. (H) corresponds to run H, and (L) corresponds to
o run L. The derivative of the velodty versus time in (L) is about 7 times larger than the
'u‘2§ derivative in (H).
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In(r)

(L)

:'{::c Fig. 4.5 log of minimum, mean and maximum bubble radius vs. time. (H) corresponds to
e run H, and (L) corresponds to run L.
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Fig. 4.6 In(rax /Tmean) V5. time. (H) corresponds to run H, and (L) corresponds to run

L.
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e (L)

) Fig. 4.7 minimum, mean and maximum bubble height vs. time. (H) corresponds to run H,
g and (L) corresponds to run L.
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cross correlation
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) (H)
cross correlation

(L)

Fig. 4.8 radius, height cross correlation vs. time. (H) corresponds to run H, and (L)
correponds to run L.
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Fig. 4.9 radius and height correlation vs. time. (H) corresponds-to run H, and (L)
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Fig. 4.10 The expected scaled radii 7, and height i, of bubbles adjacent to large bubbles
are plotted as a function of time. The y axis is in units of dimensionless length. This
plot should be contrasted to Fig. 4.5 and Fig. 4.7, which display mean radius and height
without restriction.
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10

0.793

0.0
0 A
0 1

Fig. 5.1 The dependence of the dimensionless growth rate on A and M2, The difference
between two adjacent constant contours is 0.793.
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Numerical result

Fitting result

Numerical result

L

Fitting result

D=2,M=0S5vy=14.
grid in a computational domain 1 x 8.

Q.,

(b)

NS
O

Fig. 5.2 Plots of spike velocity and bubble velocity versus time are shown with the best
two parameter fit to equation (21) superimposed, for the parameter values
The numerical results are obtained by using a 80 by 640
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/ Terminal

0 . ‘ X t
(b)

Fig. 5.3 The comparison of the spike velocity and the spike acceleration of the numeri-
cal result to its linear and large time asymptotic behavior for D = 2, M2 = .5 and
vy = 1.4. The solid lines are the numerical results obtained by using a 80 by 640 grid in
s computational domain 1 x 8.
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Fig. 5.4 The plots of the renormalization factor for gravity versus the Atwood ratio for
(a) spike and (b) bubble. For comparison, the straight lines which are proportional to
the Atwood ratio are also plotted. The data for a one component, incompressible fluid
(A = 1, M2 = 0) is taken from reference 20.
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Cp
) , ' ; .
+ +---M2=5
X --- M2=2
X
0 L L 1 ) A

Fig. 5.5 The plot of the spike drag coefficient Cp versus the Atwood ratio for
M?= 5(+) and 2 (x) and y = 1.4. Note that for A = 1, Cp = 0 on theoretical
grounds and this suggests an empirical relation Cp = const (1 — A) with the constant
dependent on M.
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+--M2=5
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(b)

Fig. 5.6 Plots of Mach number (the ratio of the terminal velocity to the sound speed of
the heavy gas) of (a) spike and (b) bubble versus the Atwood ratio. The high density
ratio systems have not reached the terminal velocity region at the end the computation.
Therefore the terminal velodty can not be determined in these systems. The spike and
the bubble velocities at the last computation step are supersonic (relative to the sound
speed of the heavy gas) in the D = 10 and 100 cases. In the incompressible case
(M? = 0), [viem 7¢| = 0 by definition.
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Fig. 5.7 A plot of the constant c; versus the square root of the Atwood ratio for D = 2
and 3, M2 = 5(+), 2 (x), and y = 1.4, The values of c, calculated from the two (*
and A) dimensional incompressible (M2 = 0, A = 1) theories are also shown. The value
o for (*) comes from reference 21 and (A) comes from reference 22.
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Fig. 5.8 Plots of the interface position, density and pressure contours for
D =15 M:=.5a=.015 v = 1.4 in a computation domain 1x6 with a 40 by 240
K grid. Only the upper two thirds of the computational region is shown in the plot
because nothing of interest occurs in the remainder of the computation. (@) The inter-
face position for successive time steps. (b) The density contour plot. (¢) The pressure
contour plot.
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Fig. 5.9 Plots of the interface position, density and pressure contours for
D =10, M* = .5,a = .015, ¥y = 1.4 in a computation domain 1x4 with a 40 by 160
grid. (a) The interface position for successive time steps. (b) The density contour plot.
(c) The pressure contour plot.
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Fig. 5.10 Plots of the interface position, density and pressure contours for
X D = 100, M: = .5,a = .015, y = 1.4 in a computation domain 1% 10 with a 20 by 200
a}c:_:' grid. Only the upper four fifths of the computational region is shown in the plot
hA because nothing of interest occurs in the remainder of the computation. (a) The inter-
Ry face position for successive time steps. (b) The density contour plot. (¢) The pressure
A contour plot.
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A
A a

Fig. 5.11 Plots of the interface position for succuss time steps for
X D=2,M"=2 A= 015,y = 1.4 in a computation domain 1x8 with 80 by 640 grids.
it Only the middle part the computational region is shown because nothing of interest
o occurs in the remainder of the computation.
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! Fig. 5.12 Plots of the interface position, density and pressure contours for
' D = 100, M? = 2,a = .015, y = 1.4 in & computation domain 1X6 with a 20 by 120
grid. (a) The interface position for successive time steps. (b) The density contour plot.
(¢) The pressure contour plot.
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t=20 t=2 t=4 t=35 t=35 t=35
a b c

Fig. 5.13 Plots of the interface position, density and pressure contours of a bubble
merger for D = 2, M =2,y = 1.4 in a computation domain 1x4 with a 75 by 300
grid. (a) The interface position for successive time steps. (b) The density contour plot.
(c) The pressure contour plot.
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e e e e

Fig. 5.14 Plots of the interface position, density and pressure contours of a bubble
merger for D = 10, M2 = 2, y = 1.4 in a computation domain 1x4 with a 75 by 300
grid. (a) The interface position for successive time steps. (b) The density contour plot.
(c) The pressure contour plot.
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g The fronts for 40 by 160 grids:

7
A AR PN

N The fronts for 10 by 40 grids:

6.1 Positions of the front at a sequence of time steps for D = 10, M? = 0.5 and
0.015 by using 40 by 160 and 10 by 40 grids. The finer grids resolve the more

Fig.
a 3
" detailed structure of the interface.
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Fig. 6.2 A comparison of the position of the spike and the bubble for D = 10,
M: = 0.5 and @ = 0.015 using (A) 10 by 40, (B) 20 by 80, (C) 40 by 160 and (E) 80 by
320 grids. Plot a is the position of the spike. Plot b is the position of the bubble. For
comparison, the linear theory is also shown. As can be seen, most of the computation
is out of the linear regime.
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Fig. 6.3 A comparison of the spike and the bubble velocity and position for the linear

theory and the full Euler equations. Here D = 10, M? = 0.5 and ¢ = 0.001. A 40 by
160 grid was used in a computational region of size 1 by 4.
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S Linear Theory
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Fig. 6.4 A comparison of different initial starting amplitudes for D = 10, M? = 0.5,
i a = 0.004 and A = 0.01 using a 40 by 320 grid in a computational region of size 1 by 4.
¢ The time plot is terminated at ¢ = 4 because for @ = 0.004, the one way reflected waves
. in the heavy gas arrive at the interface shortly after that and the agreement between
these two runs does not and should not persist after this time.
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Zspike

Fig. 6.5 A comparison of different redistribution frequencies for D = 10, M2 = 0.5 and
a = 0.01 with a 40 by 160 grid in a computational region of size 1 by 4. f = 1, 15, 100
oy corresponds to redistributing the front every 1, 1S, 100 time steps. Plot a is for the
position of the spike. Plot b is for the interface. Compare to frame 2 of Fig. 6.1.
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Fig. 6.6 A comparison of boundary effects for a domain of shape 1x4 (A) and 1x8 (B)
with 10 by 40 and 10 by 80 grids respectively. Here D = 10, M2 = 0.5 and a = 0.015.
The one way reflected wave corresponds to a signal from the nearest boundary. The

, two way reflected wave corresponds to a signal starting from the interface. Plot a is for
the velodity of the bubble. Plot b is for the position of the bubble. For distinguishing
the boundary effects from the grid effects, a 40 by 160 grid curve (A’) in the computa-
tion domain 1x4 is aiso plotted as a dotted line in the plot a. The wiggles which are
common to A and B (and missing in A’) are grid effects, while the divergence between
A and B, marked by the arrival of the one way and two way reflected signals are pure
boundary effects.
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